Telegram Group & Telegram Channel
πŸš€ Open Research Position: Hallucination Detection & Mitigation in Vision-Language Models (VLMs)

We are looking for motivated students to join our research on hallucination detection and mitigation in Visual Question Answering (VQA) models at RIML Lab.

πŸ” Project Description
Visual Question Answering (VQA) models generate text-based answers by analyzing an input image and a query. Despite their success, they still suffer from hallucination issues, where responses are incorrect, misleading, or not grounded in the image content.
This research focuses on detecting and mitigating these hallucinations to enhance the reliability and accuracy of VQA models.

πŸ“„ Relevant Papers
"Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding"
"CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models"
"Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization"

πŸ”Ή Must-Have Requirements
- Strong Python programming skills
- Knowledge of deep learning (especially VLMs)
- Hands-on experience with PyTorch
- Ready to start immediately

⏳ Workload
Commitment: At least 20 hours per week


πŸ“Œ Note: Filling out this form does not guarantee acceptance. Only shortlisted candidates will receive an email notification.

πŸ“… Application Deadline: March 28, 2025
πŸ”— Apply here: Google Form

πŸ›‘ This position is now closed. Shortlisted candidates have been notified by March 30, 2025. Thank you to everyone who applied! Stay tuned for future opportunities.

πŸ“§ For inquiries: [email protected]
πŸ’¬ Telegram: @amirezzati

@RIMLLab
#research_position #ML_research #DeepLearning #VQA



tg-me.com/RIMLLab/169
Create:
Last Update:

πŸš€ Open Research Position: Hallucination Detection & Mitigation in Vision-Language Models (VLMs)

We are looking for motivated students to join our research on hallucination detection and mitigation in Visual Question Answering (VQA) models at RIML Lab.

πŸ” Project Description
Visual Question Answering (VQA) models generate text-based answers by analyzing an input image and a query. Despite their success, they still suffer from hallucination issues, where responses are incorrect, misleading, or not grounded in the image content.
This research focuses on detecting and mitigating these hallucinations to enhance the reliability and accuracy of VQA models.

πŸ“„ Relevant Papers
"Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding"
"CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models"
"Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization"

πŸ”Ή Must-Have Requirements
- Strong Python programming skills
- Knowledge of deep learning (especially VLMs)
- Hands-on experience with PyTorch
- Ready to start immediately

⏳ Workload
Commitment: At least 20 hours per week


πŸ“Œ Note: Filling out this form does not guarantee acceptance. Only shortlisted candidates will receive an email notification.

πŸ“… Application Deadline: March 28, 2025
πŸ”— Apply here: Google Form

πŸ›‘ This position is now closed. Shortlisted candidates have been notified by March 30, 2025. Thank you to everyone who applied! Stay tuned for future opportunities.

πŸ“§ For inquiries: [email protected]
πŸ’¬ Telegram: @amirezzati

@RIMLLab
#research_position #ML_research #DeepLearning #VQA

BY RIML Lab


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/RIMLLab/169

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. β€œThe technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. β€œUnfortunately, a U.S. court stopped TON from happening.”

RIML Lab from us


Telegram RIML Lab
FROM USA